This instruction manual should be read carefully and the safety instructions observed before installing or operating the equipment related to this manual.
While every precaution has been exercised in the compilation of this document to ensure the accuracy of its contents, Sensor Technology Ltd., assumes no responsibility for any errors or omissions. Additionally, no liability is assumed for any damages that may result from the use of the information contained in this document.

Patents
Sensor Technology Ltd’s RWT series products are manufactured under one of the following US patents: 5,585,571; 6,237,417; 6,467,351; 6,765,493; 6,838,958; 6,864,759.

Copyright
Copyright ©2016 Sensor Technology Ltd. All rights Reserved. Copying or reproducing of all or any part of the contents of this manual is strictly prohibited without the express permission of Sensor Technology.

Trademarks
TorqSense® is a registered trademark of Sensor Technology Ltd.
TorqView™ is a trademark of Sensor Technology Ltd.
LabVIEW™ is a trademark of National Instruments Corporation.
National Instruments™ is a trademark of National Instruments Corporation.
Windows® is a registered trademark of Microsoft Corporation.

Lifetime Warranty
Sensor Technology Ltd’s standard range of products are warranted against manufacturing defects and component failure for two years from date of purchase, subject to fair wear and tear and return for the first year’s free of charge annual re-calibration. This warranty is extended indefinitely if the equipment is returned to Sensor Technology, or its distributor, for annual re-calibration, when software and hardware updates, if required, will be carried out free of charge. Standard range means those products as described in the company’s product data sheets.
Table of Contents

Getting Started .. 3
Introduction .. 3
Unpacking the transducer .. 3
Mechanical Installation ... 4
Operating Principles .. 5

Operation .. 6
Powering the transducer .. 6
Using the transducer .. 6
Built In Test (BIT) ... 7
Normal Operation ... 8
 Peak Mode ... 8
 Analog Scaling ... 8
Warning Signals .. 9
Error Signals .. 10
Peak Input .. 10
 Analog Output .. 10
 Peak Reset ... 10
Analog Outputs .. 11
 Data Assignments ... 11
 Voltage/Current Assignments ... 12
Fail Output .. 12
Limit Output ... 13
Zeroing the transducer ... 14
Electrical Signal .. 14
 Digital Command .. 15
Resetting transducer to factory default ... 15
Examples of reading/collection data ... 16

Optional Accessories ... 17
Analog Lead ... 17
Digital Lead (RWT420/440 series ONLY) .. 17
Digital Adaptor Lead (RWT420/440 series ONLY) .. 17

Additional Related Products and Transducer Resources .. 17
Transducer Display ETD .. 17
Transducer Signal Breakout Unit .. 17
AC Mains Adaptor Power Supply ... 17
TorqView (RWT420/440 series ONLY) .. 17
Transducer Control Program (RWT420/440 series ONLY) .. 17
Transducer Communication Protocol (RWT420/440 series ONLY) .. 17
Transducer DLL Programmers Guide (RWT420/440 series ONLY) .. 17

Leads ... 18
Analog Lead - Pin Out .. 18
Digital Lead - Pin Out (RWT420/440 Series ONLY) ... 19

Transducer Connections .. 20
Analog ... 20
Digital .. 20

Data Specification .. Attached

Appendices (RWT420/440 series ONLY)
1. RWT420/440 Series Transducer Control Utility

Attachments (the following documents may also be attached)
1. TorqView User Guide
Getting Started

Introduction

The TORQSENSE Rayleigh Wave Rotary Torque Transducer provides a method of precisely measuring bi-directional rotary or static torque. It can also be fitted with a speed sensor for monitoring in dynamic applications, enabling direct measurements of transmitted power.

The RWT series transducers require no external instrumentation and has its own built in test capability. Its compact size makes it ideal for use in applications where there is little space for any extra equipment. Analog voltage outputs are standard, with current outputs available as an option. The RWT420/440 series can also be connected to a PC via USB (optional) or RS232 so that its configuration can be changed, or by using TorqView to display torque, speed and power.

Unpacking the transducer

The following standard components are included:

- 1 x RWT Series Transducer
- 1 x RWT Electronics Module (Only if RWT430/440 ordered).
- 1 x User Manual.
- 1 x Calibration Certificate.

Additional components for RWT420/440 series:

- 1 x TorqView program installation USB flash drive, RWT Configuration Software, Manuals & Appendices in PDF format, USB driver.

The following items may also be included:

- 12pin Lumberg (female) and/or 12pin Lumberg (male).
- 1 x 2.5m Analog Lead - 15 way ‘D’ type connector (female) to 12pin Lumberg (female).
- 1 x 2.5m Digital Lead - 15 way ‘D’ type connector (male) to 12pin Lumberg (male). (RWT420/440 series transducer ONLY).
- 1 x Digital Adaptor Lead (DC Jack with USB and/or RS232 connections, depending on options requested) (RWT420/440 series transducer ONLY).
- 1 x Transducer Display ETD
- 1 x AC Mains Adaptor Power Supply.
- 1 x Transducer Signal Breakout Unit.
- 1 x Analog Dongle.

CAUTION
The RWT series transducers should not be operated at any torque load greater or speed faster than that specified in the Product data sheet and on the Transducer.

CAUTION
The RWT series transducers should not be operated in an environment where that operation could be life threatening or a danger to personnel.

CAUTION
In electrically noisy environments, the RWT series transducers should be earthed using the earthing post located on the transducer.
Mechanical Installation

To obtain the best measurements from your torque transducer it is essential that it is correctly installed.

To avoid damaging the transducer during the installation process it is highly recommended that it is electrically connected and working so that any torque overloads applied due to handling can be monitored.

For Transducers above 1Nm or 10lbf.in. it is recommended that the body of the transducer is restrained from rotation using a strap or straps connected to the tapped holes in the end plates and that it is not rigidly mounted. Couplings should be used to allow for angular misalignment while the transducer shaft takes up any parallel misalignment. Care should be taken not to induce any end loads or bending moments to the shaft, see below, as these may induce inaccuracies to the torque measurement and in extreme cases damage the transducer.

![Diagram showing mechanical installation](image)

Should rapid variations in torque need to be measured in detail e.g. torque fluctuations in gearboxes or multi vane pumps then it is recommended using torsionally rigid couplings fitted at both ends of the transducer shaft such as single membrane couplings and that these are *correctly selected for the transducer rating and speed.* An undersized coupling will not transmit the torque while the high inertia of an oversized coupling can result in instantaneous peak torques far in excess of the measured torque. Alternatively, for lower bandwidth applications where it is more important to measure the ‘average’ torque rather than fast torque fluctuations then couplings with a degree of compliance would be more appropriate.

Never use a solid coupling to connect a RWT series transducers Torque Transducer

For Transducers below 1Nm or 10lbf.in or if the application requires the body to be rigidly mounted then it is recommended that double couplings should be used at each end to compensate for any misalignment of the input/output shafts and the system designed to eliminate any end loads on the transducer shaft. For applications where *end loads cannot be avoided* please consult the sales department for advice prior to ordering.

When using a pulley or pulleys it is recommended a bearing block or blocks should be used to ensure bending loads are not transmitted to the transducer.

![Diagram showing pulleys and couplings](image)

Lastly, consider using a guard over the transducer and couplings
Whilst the transducer is resistant to EMC interference to BS EN 61326-1:2006, the sensible routing of cables is important to avoid possible EMC interference. Avoid running the transducer cables close, and/or parallel, to high voltage cables, solenoid valves, generators or inverters etc. If the cables must follow the same route as interfering cables then additional screening such as metal conduit should be used to provide isolation.

To avoid damaging the transducer during installation it is highly recommended that it is electrically connected and working during this process so that any torque overloads due to handling can be monitored.

Operating Principles

The shaft of the transducer should be connected to the mechanical system on which the measurements are to be made using appropriate couplings so it can rotate freely up to its maximum recommended speed, with relation to the transducers body and bearings fitted.

Torque applied to the shaft causes an angular deflection in the shaft (approximately 0.5 degree at maximum rated torque). This deflection is sensed by two Surface Acoustic Wave devices, resulting in a change to their resonant frequency. It is this change, which is processed to provide a torque reading.

The RWT series transducers can sense both polarity output signals. Torque applied in the clockwise sense along the transducer shaft axis produces a positive polarity output signal while torque applied in the anticlockwise sense produces a negative polarity output signal.

If an optical rotary speed sensor is fitted, a light beam is interrupted by the rotation of a disc consisting of alternate opaque and translucent segments attached to the shaft. Both 60 line and 360 line encoders are available.

The thermal characteristics of the steel shaft are compensated by having an infrared temperature sensor monitoring the shaft temperature at all times. This information is then used to correct the modulus of the steel.

Pre-load, note:

All RWT410/420 transducers with a LED in the centre of the front label (connector side) have a bearing pre-load spring fitted internally at the left hand side (pre-load end) when viewing the front label of the transducer and with the earth stud bottom ride hand corner.

All RWT430/440 transducers with a LED on the separate electronics module have a bearing pre-load spring fitted internally at the left hand side (pre-load end) of the transducer head when viewing the label of the transducer head and the connector and gland facing towards you.

If there is a possibility of an end load being applied to the transducer, the transducer should be orientated during installation such that the load is applied at the pre-load end (side with the internally fitted spring). Excessive end loads must be avoided and it is recommended that appropriate couplings be used to compensate for axial and radial misalignment.
Operation

Powering the transducer

To power the transducer a supply voltage of 12-32VDC is required with a minimum current of 1 amp (to supply peak start-up current). If a Transducer Display ETD is used the ETD will provide power for the transducer. If a Transducer Signal Breakout Unit is used the power supply should be plugged into the DC jack on the box. If a Digital Adaptor Lead is used the power supply should be plugged into the DC jack on the lead.

If a Transducer Display ETD, Transducer Signal Breakout Unit or a Digital Adaptor Lead is not used, then the power supply can be provided by using either the 2.5m Analog or Digital Lead's 15 way 'D' type connector with a supply voltage of 12-32VDC on Pin 1 and Ground on Pin 2.

Note: It is imperative that the voltage does not drop below 12V at any stage.

CAUTION
Only provide power through either the Analog or Digital lead.
Do NOT provide power through both leads simultaneously.

Using the transducer

1. Switch on the RWT series transducer by ensuring power is supplied.

2. Allow the transducer to carry out its Built In Test (BIT) procedure. Refer to the Built In Test section for further details.

3. Allow five minutes for the equipment to reach thermal equilibrium before making any measurements.

4. Zero the transducer, refer to the Zeroing the transducer section.

5. The transducer is ready for use, examples of different ways to extract data can be found in the Examples of reading/collecting data section.
Built In Test (BIT)

When the RWT series transducer is switched on it will carry out its Built In Test (BIT) procedure. While the BIT procedure is taking place there will be a series of green flashes from the LED, this is followed by a steady green or an intermittent green flash depending upon the mode of operation.

If the transducer fails its BIT procedure the transducer will display an error sequence identifying the results of each system test. The sequence will repeat until the transducer is powered off.

The error sequence is prefixed with quick succession of red flashes, identifying the LED sequence as an error condition.

After a pause a sequence of green and red flashes will indicate the results of each system test. The following table lists the tests and their test order, for each test the transducer will output either a GREEN for PASS or RED for FAIL.

<table>
<thead>
<tr>
<th>Test/Sequence Number</th>
<th>System Checks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Firmware Version 3/4: Head Connected Check</td>
</tr>
<tr>
<td></td>
<td>Firmware Version 5: Electronics Check</td>
</tr>
<tr>
<td>2</td>
<td>SAW Device Check</td>
</tr>
<tr>
<td>3</td>
<td>Temperature Sensor Check</td>
</tr>
<tr>
<td>4</td>
<td>Internal Voltage Check</td>
</tr>
<tr>
<td>5</td>
<td>Data Configuration Check</td>
</tr>
<tr>
<td>6</td>
<td>Calibration Check</td>
</tr>
<tr>
<td>7</td>
<td>SAW Parameters Check</td>
</tr>
<tr>
<td>8</td>
<td>ORT Parameters Check</td>
</tr>
</tbody>
</table>

If a failure condition exists try power cycling the transducer. Contact the factory if the problem continues.

If an error occurs during operation (solid RED LED) and is not present on power on, the BIT procedure may not identify the fault. If the Zero Input has been wired it is possible to display the Built In Test output, to do this switch the Zero Input ON until the transducer starts flashing RED.
Normal Operation

A solid green LED indicates normal mode and the transducer is working correctly.

An intermittent green flash indicates a special mode of operation; the led sequences below show the different modes.

Peak Mode
Peak Mode is active, if configured to do so the analog output will output a peak value. Please refer to the Peak Input section for further details.

Analog Scaling
The Analog Scaling status message is shown when a user defined data or voltage scale has been applied to either analog channel. This message is only relevant on RWT420/440 series transducers.
Warning Signals

A warning signal is indicated when the transducer detects a condition which impedes normal operation or the transducer is operating outside of normal operating parameters.

A warning LED sequence is prefixed with a quick succession of alternating red/green flashes, identifying the LED sequence as a warning condition. A warning sequence will override the normal operation mode LED.

After a pause a sequence of green or red flashes will indicate which warning conditions are flagged. The LED sequence will iterate through each of the flags in the table below flashing the LED for each. A RED flash indicates that a condition has been flagged; a GREEN flash indicates that a condition is clear.

Once the LED sequence is complete the sequence will restart, this will continue until the warning has cleared.

<table>
<thead>
<tr>
<th>Sequence Number</th>
<th>Warning Flag</th>
<th>Reason and Action required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analog Fault CH0 (Analog Torque)</td>
<td>In voltage output mode the analog pin is short circuit, in current output mode the analog output pin is open circuit. Check the analog connector wiring for Analog CH0.</td>
</tr>
<tr>
<td>2</td>
<td>Analog Fault CH1 (Analog Speed)</td>
<td>In voltage output mode the analog pin is short circuit, in current output mode the analog output pin is open circuit. Check the analog connector wiring for Analog CH1.</td>
</tr>
<tr>
<td>3</td>
<td>Zero Offset High</td>
<td>A torque offset greater than 10% of FSD has been applied to the measured torque value. The offset is set when the transducer is zeroed, either by the zero input on the analog connector or via a digital command.</td>
</tr>
<tr>
<td>4</td>
<td>Exceeded Temp</td>
<td>Shaft temperature has exceeded normal operating conditions. Temperature compensation may no longer be effective or calibration valid.</td>
</tr>
<tr>
<td>5</td>
<td>Over Torque</td>
<td>Torque greater than the FSD has been applied.</td>
</tr>
<tr>
<td>6</td>
<td>Critical Over Torque</td>
<td>Torque greater than 120% of the FSD has been applied. Contact the factory if the warning continues.</td>
</tr>
<tr>
<td>7</td>
<td>Head Disconnect</td>
<td>The transducer head has been disconnected. Power off the transducer electronics and check the cabling. This warning is only relevant for transducers with separate heads.</td>
</tr>
</tbody>
</table>

For example, the following sequence would indicate warnings for ‘Analog Fault CH0’ and ‘Zero Offset High’:
Error Signals

An error or fault signal is indicated when the transducer detects a condition which effects its fundamental operation. An error or fault condition will be indicated by a solid red LED. Any error that occurs will latch the LED on and it will remain on until the transducer is reset. An error condition will override a warning and normal mode LED sequence.

If the error persists across multiple power cycles, a fault may have developed with the transducer and you will need to contact the factory.

Peak Input

The peak input is a control signal and has two main purposes. It controls what data gets applied to the torque analog output and it can be used to reset the peaks.

The peak input is activated by grounding pin 8 of the Analog 15 Way ‘D’ Socket. The best way to control the peak input is to use a toggle switch.

Analog Output

When activated any analog output channel configured as “Torque – Auto Assign” will switch from being the current torque value to the highest measured torque value since reset, if the analog output is not unipolar then the torque direction will be output.

Peak Reset

When the peak input is toggled, i.e. off-on-off or on-off-on, all internal peak values on both analog and digital interfaces will be reset to defaults. A peak input toggle will also clear any latched fault condition.
Analog Outputs

The transducer has two analog outputs which can be configured to different data values, voltages, currents and scales.

Basic models are preconfigured based on model and options selected, advanced models hand the configuration to the user. The configuration of the analog outputs for advanced models is done using Transducer Control; please refer to the Transducer Control manual for further details.

The following tables show the default assignments for each model and analog option.

Data Assignments

<table>
<thead>
<tr>
<th>Model</th>
<th>Analog CH0 (Torque)</th>
<th>Analog CH1 (Speed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORT230</td>
<td>Torque – Auto Assign(^1) Scale: 0 – FSD</td>
<td>Torque – Peak Scale: 0 – FSD</td>
</tr>
<tr>
<td>RWT410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWT430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORT231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORT232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWT411</td>
<td>Torque – Auto Assign(^1) Scale: 0 – FSD</td>
<td>Speed Fast (RPM) Scale: 0 – Max Speed</td>
</tr>
<tr>
<td>RWT412</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWT431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWT432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORT233</td>
<td>Torque – Auto Assign(^1) Scale: 0 – FSD</td>
<td>Power (Watts) Scale: 0 – ((FSD x Max Speed) / 9.551)</td>
</tr>
<tr>
<td>RWT413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWT433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORT240</td>
<td>Advanced Model - User Selectable</td>
<td>Advanced Model - User Selectable</td>
</tr>
<tr>
<td>RWT420</td>
<td>Factory Default:</td>
<td>Factory Default:</td>
</tr>
<tr>
<td>RWT440</td>
<td>Torque – Auto Assign(^1) Scale: 0 – FSD</td>
<td>Torque – Peak Scale: 0 – FSD</td>
</tr>
<tr>
<td>ORT241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORT242</td>
<td>Advanced Model - User Selectable</td>
<td>Advanced Model - User Selectable</td>
</tr>
<tr>
<td>RWT421</td>
<td>Factory Default:</td>
<td>Factory Default:</td>
</tr>
<tr>
<td>RWT422</td>
<td>Torque – Auto Assign(^1) Scale: 0 – FSD</td>
<td>Speed Fast (RPM) Scale: 0 – Max Speed</td>
</tr>
<tr>
<td>RWT441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWT442</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) The value output by channels assigned with Torque – Auto Assign is dependent on the peak switch. If unconnected or if Peak is OFF the channel is assigned with Torque, if Peak is ON the channel is assigned with Torque – Peak. Refer to the Peak Input section for more details.
Voltage/Current Assignments

Assignments apply to both channels.

<table>
<thead>
<tr>
<th>Option</th>
<th>Analog Output Type</th>
<th>Analog Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTN-A ORT23x/RWT41x/RWT43x</td>
<td>Voltage</td>
<td>Bipolar ±1V, 0V Zero</td>
</tr>
<tr>
<td>OPTN-B ORT23x/RWT41x/RWT43x</td>
<td>Voltage</td>
<td>Bipolar ±5V, 0V Zero</td>
</tr>
<tr>
<td>OPTN-C ORT23x/RWT41x/RWT43x</td>
<td>Voltage</td>
<td>Bipolar ±10V, 0V Zero</td>
</tr>
<tr>
<td>OPTN-D ORT23x/RWT41x/RWT43x</td>
<td>Current</td>
<td>0 - 20mA</td>
</tr>
<tr>
<td>OPTN-E ORT23x/RWT41x/RWT43x</td>
<td>Current</td>
<td>4 - 20mA</td>
</tr>
<tr>
<td>OPTN-U ORT23x/RWT41x/RWT43x</td>
<td>Voltage</td>
<td>User specified when ordered check transducer label</td>
</tr>
<tr>
<td>OPTN-V ORT23x/RWT41x/RWT43x</td>
<td>Current</td>
<td>±8mA, 12mA Zero</td>
</tr>
<tr>
<td>Advanced Model ORT24x/RWT42x/RWT44x</td>
<td>Voltage</td>
<td>User Selectable</td>
</tr>
<tr>
<td>Advanced Model (OPTN-F) ORT24x/RWT42x/RWT44x</td>
<td>User Selectable Voltage/Current</td>
<td>User Selectable</td>
</tr>
<tr>
<td>Advanced Model (OPTN-F) ORT24x/RWT42x/RWT44x</td>
<td>User Selectable Voltage/Current</td>
<td>User Selectable Voltage/Current</td>
</tr>
</tbody>
</table>

Fail Output

The fail output signals when an error or fault condition occurs within the transducer. The fail output is linked to the internal transducer error flag. Any error condition detected will switch the output on and will remain on until the error clears. This behaviour is different from the LED which latches. The best use of the fail output is as a safety shutdown signal.

The fail signal is an open collector output. The circuit diagram below shows an example of how to wire an LED to the output.

![Circuit Diagram](image)

In firmware prior to version 5 the fail output is shared with the limits module. If the limits module is active the fail output is overridden.
Limit Output

The limit output is driven by the limits module. The limits module is a configurable set of parameters which switch the limit output on or off when certain conditions are met. These conditions include triggering when torque or speed goes above or below a set level, as well as more advanced processes like auto reset or triggering after a delay.

The limits module is configured using Transducer Control; please refer to the Transducer Control manual for further details.

The limit signal is an open collector output. The circuit diagram below shows an example of how to wire an LED to the output.

In firmware prior to version 5 the limits module does not have a dedicated output pin, instead the limit output is routed to the Fail Output pin (11). When the limits module is active the fail out signal is overridden.
Zeroing the transducer

Zeroing the transducer has the effect of introducing an offset to the torque reading. The zero can be used to remove any offset that may have been introduced from its mechanical installation or from idle torque present. It must be stressed that the zero offset is no substitute for correct installation.

When using high zero offsets, care must be taken not to overstrain the transducer. A zero offset will not extend the full scale rating of the transducer, e.g. if a transducer was zeroed at 50% then a further 50% was applied, the transducer will have reached full scale, even though the transducer would be reading of 50%. A zero offset of 10% or greater will trigger a warning condition and will be indicated by a warning LED sequence.

The transducer can be zeroed by using either a digital command or an electrical signal.

There are 3 zero modes that can be used:

- **Normal Zero**: Sets the zero offset to the current torque reading.
- **Average Zero**: Sets the zero offset to the average of 8 consecutive torque readings.
- **Fixed Zero**: A fixed value can be input and saved. Fixed Zero is only available in Transducer Control.

Unless the zero is saved, any zero offset applied will be lost after a power cycle.

Electrical Signal

Zeroing the transducer electrically can be achieved by grounding the Zero Input on pin 7 of the Analog 15 Way 'D' Socket. The best way of zeroing a transducer is to use a push button. A simple circuit diagram using a push button is shown below.

![Diagram of Zeroing Transducer](image)

The zero action is only carried out once the input has been ungrounded. Grounding the zero input momentarily (less than 2 seconds) will initiate a normal zero, grounding the input for longer will initiate other modes. When the zero input is grounded for more than 2 seconds the LED will start flashing to indicate that a new mode has been selected, subsequent mode changes are shown by an increase in flash frequency. The LED will not flash if an error condition is present.

The table below shows the various modes and timings.

<table>
<thead>
<tr>
<th>Ground Hold Time</th>
<th>LED Flash</th>
<th>Zero Mode / Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 2 Seconds</td>
<td>None</td>
<td>Normal Zero</td>
</tr>
<tr>
<td>4 - 6 Seconds</td>
<td>1 Hz Green Flash</td>
<td>Average Zero</td>
</tr>
<tr>
<td>Greater than 6</td>
<td>2 Hz Green Flash</td>
<td>Transducer will save the current zero offset so that it is remembered across power cycles.</td>
</tr>
</tbody>
</table>
Digital Command
There are multiple digital commands to select the different zero modes, refer to the transducer communication protocol manual.

Our Torqview and Transducer Control software programs implement these commands providing a simple way of zeroing the transducer.

Resetting transducer to factory default
To reset the transducer to the factory default settings (i.e. the functions set by the factory on purchase) follow the steps below:

1. Turn off transducer.
2. While holding in the zero button, power the transducer. The LED will stay solid green until the zero button is released.
3. Allow the transducer to carry out its BIT procedure.
4. When the LED is solid green all user-adjusted parameters will have been reset to the factory defaults.
Examples of reading/collecting data

For diagrammatic purposes only the RWT410/420 model is shown.
Optional Accessories

Analog Lead
The Analog Lead is a 2.5m length - 15 way ‘D’ type connector (female) to 12 pin Lumberg (female). It can be used for any RWT series transducers.

Digital Lead (RWT420/440 series ONLY)
The Digital Lead is a 2.5m length - 15 way ‘D’ type connector (male) to 12 pin Lumberg (male). It is used to configure the RWT420/440 series.

Digital Adaptor Lead (RWT420/440 series ONLY)
The Digital Adaptor Lead is an optional accessory and plugs into the 15 way ‘D’ type connector on the 2.5m Digital Lead to provide a DC jack for power and RS232 and/or a USB connection, depending upon the options requested. Note: USB specification limits the length of a cable between host and full speed device to 5 meters. A USB Extender is required for distances greater than 5m; please consult the factory for USB Extenders.

Additional Related Products and Transducer Resources

Transducer Display ETD
The Transducer Display ETD is a readout suitable for all RWT transducers. Although it is primarily used to display torque and peak torque, it can also display speed and power, provide access to the analog outputs from the transducer and connect the transducer to a PC for use with TorqView and Transducer Control.

Transducer Signal Breakout Unit (SBU)
The Transducer Signal Breakout Unit, which when plugged in powers the transducer and keeps all of the inputs and outputs in one place. The Transducer Signal Breakout Unit provides 4mm sockets to output an analog torque and speed signal. It enables switching between DC Volts, 0-20mA, 4-20mA, zero torque, angle and enable peak hold. The Transducer Signal Breakout Unit also allows communication with a PC via the built-in USB and RS232 ports. The Transducer Signal Breakout Unit is powered by a supply voltage of 12-32VDC with a minimum current of 1 amp (to supply peak start-up current).

AC Mains Adaptor Power Supply (PSU)
The AC Mains Adaptor Power supply is required to provide 12-32VDC to the RWT series Transducer and Transducer Signal Breakout Unit.

TorqView (RWT420/440 series ONLY)
TorqView is an easy to use graphical front end Virtual Instrumentation Display PC Interface Software program for use with the RWT420/440 series transducers. It allows the Torque, Speed, Power and Temperature values to be displayed in charts, dials and digital bars and can be used to assist data recording. For further information on TorqView please refer to the TorqView User Manual.

Transducer Control Program (RWT420/440 series ONLY)
Transducer Control is an all-round application to unlock the advanced functionality of the 420/440 Series Transducer. Transducer Control enables the user to exploit the flexibility of the advanced transducer series by configuring the run time parameters of the transducer to best suit their application.

Transducer Communication Protocol (RWT420/440 series ONLY)
The Transducer Communication Protocol describes the protocol required to communicate with a transducer on either RS232 or USB. The Transducer uses a simple request and send protocol, which defines the commands for requesting data and configuring functionality. Further information on the Transducer Communication Protocol is available from the factory or as a download from our website: www.sensors.co.uk/documents

Transducer DLL Programmers Guide (RWT420/440 series ONLY)
The Transducer DLL Programmers Guide provides information on how a transducer can be integrated into a third party software program. The DLL simplifies the use of the USB and RS232 interfaces by providing a unified interface to access transducers connected via either method; it takes care of the low-level driver access, protocol negotiation and data manipulation. Further information on the Transducer DLL Programmers Guide is available from the factory or as a download from our website: www.sensors.co.uk/documents
Leads

Analog Lead - Pin Out

2.5m length - 15 way ‘D’ type connector (female) to 12 pin Lumberg (female)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12-32VDC input</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Analog GND</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Analog CH1 / Speed (V or I)</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Analog CH0 / Torque (V or I)</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Reserved</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Zero Input (low = zero)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Peak Input (low = peak)</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Reserved</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Limit Output</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Fail Output</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

Female 15 way ‘D’

Do NOT supply any voltage to these ports. Closure to ground only

Female 12 way Lumberg

© Sensor Technology 2016

Page 18

RTT3745V (Rev 2)
Digital Lead - Pin Out (RWT420/440 Series ONLY)
2.5m length - 15 way 'D' type connector (male) to 12 pin Lumberg (male)

<table>
<thead>
<tr>
<th>15 way 'D' type connector (Pwr&Out)</th>
<th>12 Pin female on transducer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>12-32 VDC Input</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>RS232 RXD / CAN LO</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>RS232 TXD / CAN HI</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>USB +</td>
</tr>
<tr>
<td>8</td>
<td>USB -</td>
</tr>
<tr>
<td>9</td>
<td>USB 0V</td>
</tr>
<tr>
<td>10</td>
<td>USB Power</td>
</tr>
<tr>
<td>11</td>
<td>Fail Output</td>
</tr>
<tr>
<td>12</td>
<td>+5V OUT</td>
</tr>
<tr>
<td>13</td>
<td>Zero Angle</td>
</tr>
<tr>
<td>14</td>
<td>RPM</td>
</tr>
</tbody>
</table>

RWT420/440 Series ONLY

15 way ‘D’ plug (Data&Aux)

RWT420/440 Series ONLY

12 Pin male

Conductive pair

- PA 1
- PA 2
- P5 1
- P5 2
- P6 1
- P6 2
- P1 1
- P1 2
- P2 1
- P2 2
- P3 1
- P3 2
- P4 1
- P4 2

P5 2 and P6 2 can be connected to any GND at any point.
BRAID CONNECTED TO GND

Male 15 way 'D'

Male 12 way Lumberg
DIN45321 0332 12
Transducer Connections

Analog

15 way ‘D’ socket
(Pwr&Out)

1. 12-32VDC input
2. GND
12. GND
4. Analog CH1 / Speed (V or I)
5. Analog CH0 / Torque (V or I)
3. Analog GND
7. Zero Input (low=zero)
8. Peak Input (low=peak)
10. Limit Output
11. Fail Output

BRAID CONNECTED TO GND

Digital

15 way ‘D’ plug
(Data&Aux)

1. 12-32VDCc input
2. GND
3. RS232 RXD / CAN LO
4. GND
5. RS232 TXD / CAN HI
6. GND
7. USB+
8. USB-
9. USB 0V
10. USB POWER
11. FAIL OUTPUT
12. +5V OUT
13. ZERO ANGLE
14. RPM TTL OUT

P5 2 and P6 2 can be connected to any GND at any point. BRAID CONNECTED TO GND

Do NOT supply any voltage to these ports. Closure to ground only
Declaration of Conformity

EC Directives

We, Sensor Technology Ltd, hereby declare that the products named below, to which this Declaration of Conformity relates, is in conformity to the requirements of EC Council Directives and Standards as listed:

- BS EN 61326-1:2006, (Electrical equipment for measurement, control and laboratory use).

<table>
<thead>
<tr>
<th>Type of Product</th>
<th>Rotary Torque Transducer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Name(s)</td>
<td>RWT410, RWT411, RWT413,</td>
</tr>
<tr>
<td></td>
<td>RWT420, RWT421, RWT430,</td>
</tr>
<tr>
<td></td>
<td>RWT431, RWT433, RWT440,</td>
</tr>
<tr>
<td></td>
<td>RWT441, RWT442.</td>
</tr>
</tbody>
</table>

Intended use: Measurement of rotary torque within the rated torque and speed limits as described on the transducer.

Managing Director
Sensor Technology Ltd
10th November 2016
Digital RWT430/440 series Torque Transducer

TorqSense Digital RWT430/440 series transducers with separate electronics now offer cost effective, non-contact digital rotary torque measurement, using Surface Acoustic Wave technology, suitable for torque monitoring, testing or controlling drive mechanisms. TorqSense RWT430/440 series transducers and their technology are particularly appropriate for OEM applications.

TorqSense RWT430/440 torque sensors feature all new electronics that have produced significant performance gains in resolution, frequency response, reduced sensor current consumption and faster digital data throughput. Transducer overload has also been increased to 300%.

Benefits
- Minimal shaft length
 - High shaft stiffness
- Low inertia – High
 Speed capability
 because electronics
 are not fixed onto shaft
- Non contact/brushless
 measurement
- High Bandwidth
- 300% safe mechanical
 overload
- High accuracy (0.25%) and resolution (0.02%)
- Excellent noise immunity
- Separate digital electronics
- Operates both statically and dynamically
 - clockwise/anti-clockwise
- Any full scale torque can be specified within standard range: 1Nm through to 13,000Nm
- Lifetime warranty

Consult factory for ranges greater than 13KnM
High speeds available on request

Technology
TorqSense patented technology is the measurement of the resonant frequency change in ‘frequency dependent’ Surface Acoustic Wave (SAW) devices, caused when strain is applied. The signal is coupled via a non-contact RF rotating couple from the shaft to a fixed pick-up.

A separate electronics module enables the resonant frequencies to be measured and offer user selectable features, digital outputs and diagnostics. SAW devices are not affected by magnetic fields.

TorqSense RWT430 series transducers offer:
- Fixed voltage or current analog outputs (one for torque and the other for speed or power) for interfacing with analog instrumentation
- BIT Self-diagnostics for letting the manufacturer know that the transducer’s torque, speed ratings and calibration due date have not been exceeded
- Simple ‘Sensor status’ output pin
- Sensors to monitor shaft temperature for better compensation and accuracy

Whereas, TorqSense RWT440 series transducers offer:
- Digital outputs, such as RS232, CANbus and USB, for interfacing with modern instrumentation and laptops
- Digital input for configuring transducer via PC
- 2 x user selectable voltage or current analog outputs (one for torque and the other for speed, power or peak torque) for interfacing with analog instrumentation
- Transducer configuration software to allow user to changes transducer variables
- BIT Self-diagnostics for letting users know data is trustworthy, that the transducer’s torque, speed ratings and calibration due date have not been exceeded
- Simple ‘Sensor status’ output pin
- Sensors to monitor shaft temperature for better compensation and accuracy
- Ability to connect up to 10 transducers using USB

TORQVIEW Software
TorqView is an easy to use advanced torque monitoring software, available to assist data recording and instrumentation displays that interface with Windows based PCs.
Features include: 3 types of display, text files compatible with Matlab and Excel and Real time chart plotting.
See TorqView datasheet for more details.

LabView VIs are available for users to design their own process control applications. DLLs are also available for users to write their own custom software.
RWT430/440 Series Torque Transducers - Data Specification

#### Parameter	Condition	Data	Units
RWT430/440 Torque measurement system

Measurement method | Strain Dependent Surface Acoustic Wave Resonators (interrogated by an incremental electronic scanning method)

<table>
<thead>
<tr>
<th>Torque range</th>
<th>(See Notes 1 & 2 below)</th>
<th>0 – 1</th>
<th>0 – 1.1</th>
<th>0 – 21</th>
<th>0 – 101</th>
<th>0 – 501</th>
<th>0 – 2001 Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0 - 10]</td>
<td>to 0 - 20</td>
<td>to 0 - 100</td>
<td>to 0 - 500</td>
<td>to 0 - 2000</td>
<td>to 0 - 13000</td>
<td>[Ibf-in]</td>
</tr>
</tbody>
</table>

| Shaft size (diameter) | 6 | 12 | 20 | 30 | 50 | 75 | mm |

Rotation speed/angle of rotation measurement system

Measurement method | Opto switch through slotted disc

Direct output signal | Pulse output direct from opto switch (TTL, 5V square wave), output is independent of any analog or digital processing.

Digital Processing Techniques

Processing modes run simultaneously and can be applied to either analog channel or accessed individually via a digital connection.

<table>
<thead>
<tr>
<th>Processing Method</th>
<th>Mode 1 (Slow Method)</th>
<th>Frequency Count</th>
<th>0 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mode 2 (Fast Method)</td>
<td>Period Count</td>
<td>< 2000 RPM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> 2000 RPM</td>
</tr>
</tbody>
</table>

Rotational speed (max) | (See Note 3) | 30,000 | 20,000 | 15,000 | 12,000 | 9,000 | 6,000 | RPM |

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>IR temperature sensor monitoring actual shaft temperature</td>
</tr>
<tr>
<td>Reference temperature, T_{RT}</td>
<td>20°C</td>
</tr>
<tr>
<td>Operating range, ΔT_{o}</td>
<td>-10 to +50°C</td>
</tr>
<tr>
<td>Storage range, ΔT_{s}</td>
<td>-20 to +70°C</td>
</tr>
<tr>
<td>Temperature drift (FS)</td>
<td>Max 0.05%FS/°C</td>
</tr>
</tbody>
</table>

RWT430 Series Transducers ONLY

| Accuracy | 20°C, SM (See Note 4) | ±0.25 (±0.5 for 2.5Nm and below) | %FS |
| 3dB Bandwidth | (See Notes 5&6) | 312 (default ave. = 16) | Hz |

RWT440 Series Transducers ONLY

Digital averaging	(See Note 5)	2	4	8	16	32	64	128	N
Accuracy	20°C, SM (See Note 4)	±0.7	±0.5	±0.4	±0.25	±0.25	±0.25	±0.25 %FS	
3dB Bandwidth	(See Note 6)	2500	1250	625	312	156	78	39	Hz

Analog output

Output voltages (Torque/Speed/Power)	Options available: ±1 / ±5 / ±10 / Unipolar (RWT430 Series default setting is ±5Vdc) Options available: 4-20 / 0-20 / 12±8 (RWT440 Series default setting is ±5Vdc)	
Load impedance	Maximum 1 KΩ	
Output currents (Torque/Speed/Power)	Options available: 4-20 / 0-20 / 12±8	mA
4-20mA Loop resistance	Should not exceed 400 Ω	

Digital output (RWT440 Series Transducers ONLY)

Connections	CAN Bus	USB				
Configuration	CAN 2.0B, 11bit Message Identifiers	Data Bits: 8, Parity: None, Stop Bits: 1	USB 2.0 Full-Speed			
Baud Rate(s)	1 Mbps, 500 Kbps, 250 Kbps, 100 Kbps	115200 bps, 38400 bps, 9600 bps	12 Mbps			
Output Rate (Note 7)	Up to 10 KHz	Up to 1.1 KHz	Single Transfer	Bulk Transfer	Up to 500 Hz	Up to 10 KHz

Power supply

Nominal voltage, V_{n}	12 to 32 (max)	V
Current consumption, I_{S}	230 (max) @ 12 VDC	mA
Power consumption, W_{n}	3	W
Allowed residual ripple of supply voltage, V_{ripple}	500 mVp-p	

Electromagnetic compatibility

| EMC compatibility | EN 61326:2006 |

Note 1: Any torque/FSD is possible between ranges – please specify max rated torque.

Note 2: Max rated torque should not be exceeded.

Note 3: Please consult factory for applications requiring rotational speeds that exceed maximum figures given. Transducers fitted for IP65 will have running speeds considerably reduced, increased drag torque and accuracy can be affected.

Note 4: SM – Static Mode. Dynamic values will depend upon user application and has to be adjusted accordingly.

Note 5: Digital averaging can be configured by user to optimise accuracy/frequency response for specific user applications. Digital averaging default setting is N=16. For details see User Manual.

Note 6: >5Khz Sample Rate. Up to 10Khz sample rate possible, please consult factory. Digital averaging also affects the analog output, max analog output 3dB Bandwidth = 5Khz when digital average is 1.

Note 7: Output rate figures are calculated from the time taken to capture 10000 torque readings. Testing was conducted with each connection method configured at its maximum baud rate. The maximum output rate available for CAN and USB is dependant on the transducers setup. USB - USB is a host based bus architecture, because of this the output rate achievable will be affected by other bus traffic and host activity. USB has two transfer modes, Single Transfer which requests 1 reading at a time and Bulk Transfer which transfers readings in blocks of 50 Torque/Speed pairs. CAN Bus - to achieve a Torque reading output rate of 10Khz, the Speed reading output rate must be reduced to 100hz.

© Sensor Technology Ltd 2019 RWT3350R (Rev6)
RWT430/440 Series Torque Transducers

Dimensions (1Nm to 100Nm)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque (Max)</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>Shaft Code</td>
<td>CF</td>
<td>DA</td>
</tr>
<tr>
<td>Shaft Size (Diameter)</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Torsional Stiffness</td>
<td>0.23</td>
<td>1.28</td>
</tr>
<tr>
<td>Mass moment of inertia, (L_v)</td>
<td>0.45</td>
<td>5.96</td>
</tr>
<tr>
<td>Max measurable load limit</td>
<td>120</td>
<td>(of rated torque)</td>
</tr>
<tr>
<td>Static safe load breaking</td>
<td>300</td>
<td>(of rated torque)</td>
</tr>
<tr>
<td>Shaft weight, approx.</td>
<td>0.03</td>
<td>0.14</td>
</tr>
<tr>
<td>Transducer with shaft weight, approx (1 dp)</td>
<td>0.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Data parameters measured at +20°C
Sensor Technology Ltd reserves the right to change specification and dimensions without notice.

© Sensor Technology Ltd 2019

RWT3350R (Rev8)
RWT430/440 Series Torque Transducers

Dimensions (101Nm to 500Nm)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torque (Max)</td>
<td>175</td>
<td>225</td>
</tr>
<tr>
<td>Shaft Code</td>
<td>FA</td>
<td>FB</td>
</tr>
<tr>
<td>Shaft Size (Diameter)</td>
<td>30</td>
<td>mm</td>
</tr>
<tr>
<td>Torsional stiffness</td>
<td>32.9</td>
<td>35.6</td>
</tr>
<tr>
<td>Mass moment of inertia</td>
<td>138.9</td>
<td>143.1</td>
</tr>
<tr>
<td>Max measurable load limit</td>
<td>120</td>
<td>(of rated torque)</td>
</tr>
<tr>
<td>Static safe load breaking</td>
<td>300</td>
<td>(of rated torque)</td>
</tr>
<tr>
<td>Shaft weight, approx</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Transducer with shaft weight, approx (1 dp)</td>
<td>2.3</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Data parameters measured at +20°C

Sensor Technology Ltd reserves the right to change specification and dimensions without notice.
RWT430/440 Series Torque Transducers

Dimensions (501Nm to 13000Nm)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque (Max)</td>
<td>650</td>
<td>Nm</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>Nm</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>Nm</td>
</tr>
<tr>
<td></td>
<td>1350</td>
<td>Nm</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>Nm</td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>Nm</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>Nm</td>
</tr>
<tr>
<td></td>
<td>6000</td>
<td>Nm</td>
</tr>
<tr>
<td></td>
<td>10000</td>
<td>Nm</td>
</tr>
<tr>
<td></td>
<td>13000</td>
<td>Nm</td>
</tr>
<tr>
<td>Shaft Code</td>
<td>GE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HG</td>
<td></td>
</tr>
<tr>
<td>Shaft Size (Diameter)</td>
<td>50</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>mm</td>
</tr>
<tr>
<td>Torsional Stiffness</td>
<td>TBC</td>
<td>kNm/rad</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kNm/rad</td>
</tr>
<tr>
<td></td>
<td>199.2</td>
<td>kNm/rad</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kNm/rad</td>
</tr>
<tr>
<td></td>
<td>214.1</td>
<td>kNm/rad</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kNm/rad</td>
</tr>
<tr>
<td></td>
<td>914.4</td>
<td>kNm/rad</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kNm/rad</td>
</tr>
<tr>
<td></td>
<td>945.5</td>
<td>kNm/rad</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kNm/rad</td>
</tr>
<tr>
<td>Mass moment of inertia</td>
<td>TBC</td>
<td>kg(m^2)</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kg(m^2)</td>
</tr>
<tr>
<td></td>
<td>1330</td>
<td>kg(m^2)</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kg(m^2)</td>
</tr>
<tr>
<td></td>
<td>1497</td>
<td>kg(m^2)</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kg(m^2)</td>
</tr>
<tr>
<td></td>
<td>7932.7</td>
<td>kg(m^2)</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kg(m^2)</td>
</tr>
<tr>
<td></td>
<td>9407.1</td>
<td>kg(m^2)</td>
</tr>
<tr>
<td>Max measurable load limit</td>
<td>120</td>
<td>%</td>
</tr>
<tr>
<td>Static safe load breaking</td>
<td>300</td>
<td>%</td>
</tr>
<tr>
<td>Shaft weight, approx</td>
<td>TBC</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>3.9</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>10.6</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>11.2</td>
<td>kg</td>
</tr>
<tr>
<td>Transducer with shaft weight, approx</td>
<td>TBC</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>7.3</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>13.4</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>13.8</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>14.4</td>
<td>kg</td>
</tr>
</tbody>
</table>

Measurement units: Millimetres (mm)

Data parameters measured at +20°C

Sensor Technology Ltd reserves the right to change specification and dimensions without notice.
RWT430/440 Series Electronics Module

Data parameters measured at +20°C
Sensor Technology Ltd reserves the right to change specification and dimensions without notice.

Measurement units: Millimetres (mm)
RWT430/440 Series Torque Transducers - Standard Range

<table>
<thead>
<tr>
<th>Torque, Speed, Power Outputs</th>
<th>RWT430/440 Series Option Code</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque only</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td>Torque & Speed (60 pulses/rev)</td>
<td>431</td>
<td>User to specify RPM/FSD when ordering</td>
</tr>
<tr>
<td>Torque & Power (60 pulses/rev)</td>
<td>433</td>
<td>User to specify Power/FSD when ordering</td>
</tr>
<tr>
<td>Torque & Speed (60 pulses/rev) or Power</td>
<td>441</td>
<td>Outputs are user selectable</td>
</tr>
</tbody>
</table>

Standard features

- **Keyed Shaft Ends** ● ● K
 1Nm will have flats

- **Voltage output ±5v FSD (Fixed)** ● B

- **Voltage outputs from ±1v to ±10v FSD and unipolar (Variable)** ●
 Output is user selectable

- **RS232 output** ●

- **Torque Averaging & Torque Peak** ●

- **Self Diagnostics** ● ●

- **Internal temperature measurement** ● ●
 Value available on RWT440 series only

- **Deep grooved shielded bearings with oil lubrication** ● ●

- **Ingress Protection (IP) 54** ● ●

- **Link Cable (1.5m)** ● ●
 From sensor head to electronics module

Optional features

- **Plain Shaft Ends** ◊ ◊ P
 Shaft length will be longer than keyed end shafts – consult factory for length

- **Splined Shaft Ends** ◊ ◊ T
 Consult factory for details

- **Voltage output ±1v FSD (Fixed)** ◊ A
 In place of Option B

- **Voltage output ±10v FSD (Fixed)** ◊ C
 In place of Option B

- **Customer Specified Voltage Output (Fixed)** ◊ U
 In place of Option B. User to specify range/scale when ordering

- **Current output 0-20mA (Fixed)** ◊ D
 In place of Voltage output options

- **Current output 4-20mA (Fixed)** ◊ E
 In place of Voltage output options

- **Current output 12±8mA (Fixed)** ◊ V
 In place of Voltage output options

- **Current output 0-20mA, 4-20mA & 12±8mA (Variable)** ◊ F
 Current output is user selectable and in place of Voltage output. However user can reselect a Voltage output, if required. (Note 8)

- **USB2.0 full speed 12 Mbps Digital output** ◊ G

- **CANbus output** ◊ H
 In place of RS232

- **High Speed Bearings (See Note 9 below)** ◊ ◊ J

- **Sealed Bearings** ◊ ◊ S
 Consult factory for maximum speed allowance

- **Ingress Protection (IP) 65 – for sensor and electronics (See Note 10 below)** ◊ ◊ L

- **Ingress Protection (IP) 65 – Cavity ‘D’ connectors in lead b/w sensor & electronics** ◊ ◊ M

- **Cavity ‘D’ connectors in lead b/w sensor & electronics** ◊ ◊ N

- **Link Cable (>1.5m)** ◊ ◊ R
 Consult factory for length

Note 8: 2 x analog channels available. Default settings are Channel 1 (voltage/current) – torque.
Channel 2 (voltage/current) – speed or power, if ordered.

Note 9: At very high speeds, for better balance the factory recommend plain or splined shafts.

Note 10: Transducers fitted for IP65 will have running speeds considerably reduced, increased drag torque and accuracy can be affected.

Data parameters measured at +20°C

Sensor Technology Ltd reserves the right to change specification and dimensions without notice.

© Sensor Technology Ltd 2019
RWT430/440 Series Torque Transducers – Connector and Lead Options

<table>
<thead>
<tr>
<th>Connectors & Leads</th>
<th>Option Code</th>
<th>Remarks/Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Connector</td>
<td>ACC 1</td>
<td>For user to self wire</td>
</tr>
<tr>
<td>12 Pin Lumberg (female)</td>
<td>◊</td>
<td></td>
</tr>
<tr>
<td>Digital Connector</td>
<td>ACC 2</td>
<td>For user to self wire</td>
</tr>
<tr>
<td>12 Pin Lumberg (male)</td>
<td>◊</td>
<td></td>
</tr>
<tr>
<td>Analog Lead (Length 2.5m)</td>
<td>ACC 3</td>
<td>For connecting RWT to user’s system via 15 pin ‘D’ connector</td>
</tr>
<tr>
<td>12 Pin Lumberg (female) to 15 way ‘D’ type connector (female)</td>
<td>◊</td>
<td></td>
</tr>
<tr>
<td>Digital Lead (Length 2.5m)</td>
<td>ACC 4</td>
<td>For connecting RWT to user’s system via 15 pin ‘D’ connector</td>
</tr>
<tr>
<td>12 Pin Lumberg (male) to 15 way ‘D’ type connector (male)</td>
<td>◊</td>
<td></td>
</tr>
</tbody>
</table>

Digital Lead Adapter (Length 1m)

| 15 Way ‘D’ type (female) to RS232 and Power Connectors | ACC 5 | For connecting RWT to PC via RS232
[Also needs Digital Lead (ACC4) to connect to RWT] |
| 15 Way ‘D’ type (female) to RS232, USB and Power Connectors | ACC 6 | For connecting RWT to PC via USB (Option G) or RS232
[Also needs Digital Lead (ACC4) to connect to RWT] |
| 15 Way ‘D’ type (female) to CANbus and Power Connectors | ACC 8 | For connecting RWT to PC via CANbus (Option H)
[Also needs Digital Lead (ACC4) to connect to RWT] |
| 15 Way ‘D’ type (female) to CANbus, USB and Power Connectors | ACC 9 | For connecting RWT to PC via USB (Option G) or CANbus (Option H)
[Also needs Digital Lead (ACC4) to connect to RWT] |

RWT430/440 Series Torque Transducers – Additional related products

<table>
<thead>
<tr>
<th>Code</th>
<th>Remarks/Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETD</td>
<td>Display readout</td>
</tr>
<tr>
<td>PSU 1</td>
<td>For providing 12-32Vdc</td>
</tr>
<tr>
<td>SBU 2</td>
<td>Torque Monitoring Software</td>
</tr>
</tbody>
</table>

Data parameters measured at +20°C

Sensor Technology Ltd reserves the right to change specification and dimensions without notice.
When you order a Torque Transducer please note that any torque/FSD is possible between ranges – please specify rated torque and options using the following format:

For example: RWT 431 - 15Nm - K-CL

<table>
<thead>
<tr>
<th>Your transducer requirement: RWT</th>
<th>Max speed (if applicable)</th>
<th>RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector & Lead options</td>
<td>(if applicable)</td>
<td>See over</td>
</tr>
<tr>
<td>Additional related products</td>
<td>(if applicable)</td>
<td>See over</td>
</tr>
</tbody>
</table>

A 'basic' transducer with torque and speed outputs, rated and calibrated to 15Nm FSD with keyed ends, ±10v and IP65 protection.

Glossary of terms and definitions used in this datasheet

- **Surface Acoustic Wave (SAW)** - An acoustic wave travelling along the surface of a material having some elasticity, with amplitude that typically decays exponentially with the depth of the substrate.
- **Strain dependent SAW resonators** – A type of elastic SAW device, which changes its resonant properties when it is subjected to axial strain/compression. TorqSense uses this principle, which is protected by a number of patents.
- **Incremental Electronic Scan (IES)** – The most successful and precise method for interrogating strain dependent SAW resonators. The IES interrogation method uses a processor controlled frequency synthesiser to excite the SAW resonators over a defined range of frequencies and measure the reflected signal. TorqSense uses this patented method.
- **Resolution of the IES method** - The minimum measurable number corresponding to the stress/strain sensitive resonance point of the SAW resonator. The value is limited by following the factors:
 - frequency resolution of the synthesiser, which is 1000 times greater than overall resolution of the system.
 - relationship between frequency response and resolution. Increments of the resolution will proportionally decrease the system’s frequency response. TorqSense systems are optimised for the best performance that suits most applications. However, on the RWT440 series models customers do have the capability to adjust the system performance.
- **Frequency response of the IES method** – The measure of the TorqSense system’s response at the output to a signal of varying frequency at its input. The frequency response is typically characterised by the magnitude of the system's response, measured in dB. There are two ways of characterising the system’s frequency response:
 - 0.1dB frequency range, where the output magnitude of the signal is different to the input magnitude of the signal by not more then 0.1dB (practically absolutely identical).
 - 3dB frequency range, where the output magnitude of the signal is 0.707 of the input signal. This is a common standard for most applications, unless it specifically says otherwise. This standard is also used to characterise the TorqSense system’s frequency response.
- **Accuracy** - The degree of conformity of a measured or calculated quantity, which will show the same or similar results. Accuracy of the overall TorqSense system is limited by the combined error of several factors such as linearity, hysteresis, temperature drifts and other parameters affecting measurements. If errors in the system are known or can be estimated, an overall error or uncertainty of measurement can be calculated.
- **Digital averaging** – The application of algorithms to reduce white noise. In any electronic system, electronic white noise is mixed with the signal and this noise usually limits the accuracy. To reduce the influence of white noise and increase the accuracy of the system different averaging algorithms can be applied. In the TorqSense system a flying digital averaging technique is applied to reduce the white noise commensurate with the level of accuracy required. However, as any averaging algorithm works as a low pass filter, the more averaging that is applied the lower the frequency response. Therefore, each TorqSense system should be optimised to the customer’s requirements by choosing the right combination of accuracy/frequency response. Please see relevant part of the Datasheet and User Manual.

Data parameters measured at +20°C
Sensor Technology Ltd reserves the right to change specification and dimensions without notice.
Table of Contents

Introduction .. 3
Transducer Requirements .. 3
Compatible Models ... 3
PC Requirements ... 3
Installation .. 4
Running Transducer Control & Connecting To A Transducer 5
Using Transducer Control .. 7
Menu Tree .. 7
Transducer Configuration ... 8
User Configuration .. 8
 Analog Setup ... 8
 Digital Setup ... 15
Zero Offset .. 21
Transducer Test .. 22
Output Monitor .. 22
Transducer Status .. 23

Contact Details

Sensor Technology Ltd,
Apollo Park,
Ironstone Lane,
Wroxton,
BANBURY,
OX15 6AY,
United Kingdom.

Sales
Email: stlsales@sensors.co.uk
Tel: +44 (0)1869 238400

Technical Support
Email: software@sensors.co.uk
Tel: +44 (0)1869 238400
Introduction
Transducer Control is an all-round application to unlock the advanced functionality of the ORT/RWT Series Transducers. Transducer Control enables the user to exploit the flexibility of the advanced transducer series by configuring the run time parameters of the transducer to best suit their application.

Transducer Control gives the user complete control of the dual channel analog output by allowing adjustment of the output voltage scaling, zero voltage, data scaling and data assignment. On the digital side the user can control the digital filtering level, adjust the RS232 baud rate and configure the limit controls.

As well as configuring the transducer, Transducer Control can also be used as a readout, providing a simple text display that shows torque, speed and power along with peak values and zero control.

Compatible Models
Advanced models from the ORT240, RWT320, RWT340, RWT420 and RWT440 Series Transducers are compatible with Transducer Control 5. Transducers must be running firmware version 3 or higher.

The compatible models are listed below:

<table>
<thead>
<tr>
<th>Transducer Family</th>
<th>Model Range</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical (ORT)</td>
<td>ORT240</td>
<td>ORT240/ORT241</td>
</tr>
<tr>
<td>Rayleigh Wave (RWT)</td>
<td>RWT320</td>
<td>RWT320/RWT321/RWT322</td>
</tr>
<tr>
<td></td>
<td>RWT340</td>
<td>RWT340/RWT341/RWT342</td>
</tr>
<tr>
<td></td>
<td>RWT420</td>
<td>RWT420/RWT421/RWT422</td>
</tr>
<tr>
<td></td>
<td>RWT440</td>
<td>RWT440/RWT441/RWT442</td>
</tr>
</tbody>
</table>

Compatible transducers can be identified by the presence of a status LED and serial number greater than 12200.

Transducer Requirements
- Advanced ORT/RWT Series Transducer.
- RS232 or USB connection to a PC.

PC Requirements
- CPU: Intel or AMD 1GHz.
- RAM: 512MB.
Installation
To install Transducer Control 5:

1. Insert the Sensor Technology Installation CD into your CD-ROM drive. The following screen will be displayed.

2. Click the 'Install' button next to “Transducer Control 5”.
3. Follow the onscreen instructions.
4. Transducer Control will now be installed and be ready for use.

The USB drivers are installed as part of the installation.
Running Transducer Control & Connecting To A Transducer
To run Transducer Control and connect to a transducer:

1. Ensure that power is supplied to the transducer.
2. Connect the transducer to the computer using either RS232 or USB.
3. Run the Transducer Control program by clicking on the "Start"/"Windows" button, then "Programs"/"All apps" > "Sensor Technology" > "Transducer Control 5".

When Transducer Control starts the “Search for connected transducers” dialog box will be displayed. The purpose of the dialog box is to find transducers that are attached to the computer.

Before pressing the “Search” button, select a search filter from the “Select Port To Search” combo box. The items in the list correspond to the default search options and ports discovered on the user's computer. The filter reduces the time taken to search for transducers by only looking in the selected area.
The options prefixed with “AUTO” will search for multiple transducers, whereas the COMx options will search for a single transducer on a specific port.

AUTO
AUTO will search for connected transducers on all available ports.

AUTO RS232
AUTO RS232 will search for connected transducers on RS232 ports only.

AUTO USB
AUTO USB will search for connected transducers on USB ports only.

COMx
COMx will search for a connected transducer on the selected COMx port.

If the transducers connection method is known, it is recommended that it be selected, if it is unknown select “AUTO”.

Once an option has been selected, click on the “Search” button. Transducer Control will then search for compatible transducers using the filter supplied. During this process the window will update to indicate the progress of the search, transducers will be added to the listbox as they are found.

If a single transducer is detected the program will automatically initialise the transducer and load the main window. If multiple transducers are detected, the dialog box will require the user to make a transducer selection. To select a transducer, click on the transducer from the list. The transducer will then be initialised and used by the program.
Using Transducer Control
The main screen will be displayed once a transducer has been selected, use the menu at the top of the screen to select an option.

Menu Tree
The menu structure below outlines the functionality of the different menu options.

File
- Exit – Closes Transducer Control.

Transducer Configuration
- User Configuration – Configures the operational parameters of the transducer.
- Zero Offset – Sets a torque offset.

Transducer Test
- Output Monitor – Displays capture data generated by the transducer.
- Transducer Status – Displays the transducers status.

Help
- About Transducer Control – Displays version information.
Transducer Configuration

User Configuration

Analog Setup
The “Analog Setup” tab of the user configuration allows the user to configure the transducers analog outputs.

All transducers have dual analog outputs with equal capability on both.

Analog Data Select
The Analog Data Select section allows the user to assign an internal data variable to the output, and select a data range to be applied to the Analog Voltage Scaling.

Data Select
The following list details the available internal data variables that can be assigned to the output. Speed and Power items are dependent on the relevant options being fitted:

Torque – Auto Assign
The “Torque – Auto Assign” data option will switch between Torque – Actual and Torque – Peak based on the state of the external peak switch input (see Transducer Manual for pin out and control information). If the Peak input is switched ON, Torque – Peak is selected, otherwise Torque – Actual is selected.

Torque – Actual
Current torque value.
Torque – Peak
Peak torque value captured since the last reboot or reset.

Torque – Auto Reset
Peak torque value captured since the last reboot or reset. Auto Reset mode automatically resets the peak torque when the current torque drops below a percentage of the peak value.

Torque – Peak CW
Peak torque value captured in the CW direction.

Torque – Peak CCW
Peak torque value captured in the CCW direction.

Torque – Min
Lowest numerical torque value captured.

Torque – Max
Highest numerical torque value captured.

Speed (Fast) / Speed (Slow)
Current speed value. The slow/fast descriptor refers to the method used to capture speed.

Speed (Fast) – Peak / Speed (Slow) – Peak
Highest speed value captured since the last reboot or reset.

Speed – Rotations
Number of shaft rotations recorded from the fitted angle device or speed pickoff.

Power (Fast) / Power (Slow)
Power is computed from the current torque and speed values captured. The slow/fast descriptor refers to the method used to capture speed.

Power (Fast) – Peak / Power (Slow) – Peak
Highest power value captured since the last reboot or reset. Power is calculated from every torque/speed pair captured, the highest value is stored.

Temperature – Shaft
Temperature captured from the shaft IR sensor.

Temperature – Internal
Temperature captured from the internal body sensor.
Data Ranges
The data range parameters control how data from the selected internal variable is taken and scaled. This feature is useful when the user is working in a specific measurement area and requires a greater change in analog output.

The low and high range values effectively rescale to the Zero and FSD voltages set in the Analog Voltage Scaling section. Values that fall below or above the range are masked off; the range selection applies to both negative and positive sides.

Data Range
The user can select a default scale or opt for a custom scale, by selecting from the “Data Range” combo box.

- **Default FSD Range**
 The “Default FSD Range” option scales the selected internal variable based on the FSD rating programmed into the transducer, i.e. 0 to FSD.

- **User Defined**
 The “User Defined” option allows the user to adjust the “Range Low” and “Range High” sliders to select a custom scale.

Range Low / Range High
The “Range Low” and “Range High” slider bars control the low and high scale values. The “Range Low” parameter can be set between 0 and 80% of FSD, and the “Range High” parameter can be set between 20% and 100% of FSD. The parameter value is displayed in a text box to the right of each range slider. The value is displayed in an appropriate unit for the selected data variable, i.e. Torque = Nm or the configured unit, Speed = RPM, Power = Watts.

To change the high or low range values adjust the slider bar to the left or right until the number in the text box equals the required value. The difference between the “Range Low” and “Range High” must be greater than 10% of FSD and “Range High” must be a higher value than “Range Low”.

Revision 5, December 2016 - Page 10
The following graphs illustrate some examples of how the range selection works.

- Torque (100Nm FSD), Standard Range (0 Nm - 100 Nm), ±10v Scale.

- Torque (100Nm FSD), User Defined Range (50 Nm - 100 Nm), ±10v Scale.

- Torque (100Nm FSD), User Defined Range (0 Nm - 50 Nm), ±10v Scale.
Range effects on resolution
The range selection will in no way effect or increase the resolution of the transducer. The value expansion is artificial and aids only to give the user a greater change in analog output value.

Analog Voltage Scaling
The Analog Voltage Scaling section configures the zero and output range of the analog output channels. The data and range values selected in the Analog Data Select section are scaled to values configured here.

Users can either select from a list of common predefined scales or select a custom scale using the slider bar adjustments.

Voltage Scale Select
The “Voltage Scale Select” combo box lists the available predefined scales and user select modes. When a selection is made the slider bars will adjust to reflect the selection and illustrate the scaling.

The following graphs illustrate the predefined scales that are available. The graphs are scaled against Torque with a standard 0 – FSD Range.

Predefined Voltage Scales

![Graphs of Predefined Voltage Scales](image)
Predefined Current Scales (Option ‘F’ - Current Output)
User Defined Voltage
If a custom analog output scaling is required select the “User Defined Voltage” option from the “Voltage Scale Select” combo box, then use the “Zero Offset” and “Voltage Swing” slider bars to configure the required scaling. The text boxes to the right of the respective slider bars will display the configured voltage.

Zero Offset
The “Zero Offset” allows the user to change the zero point voltage between 0 and 9.5V. If the “Zero Offset” is increased, the maximum 10V “Voltage Swing” voltage will be reduced.

This feature is useful if the user has an analog capture device that does not support negative voltages (unipolar only), but requires the direction of torque.

Voltage Swing
The “Voltage Swing” sets the voltage span of the analog output. The voltage can be stepped in 0.1V increments and can be scaled between 0.5V and 10V. The maximum voltage will be reduced if the “Zero Offset” is not 0V.

Unipolar / Absolute Value
The “Unipolar / Absolute Value” checkbox option switches the analog output into a positive only voltage. All input values will be made absolute, making all negative values positive, i.e. -5Nm value will become +5Nm. This has the effect of removing the torque direction from the voltage output.
Digital Setup

The “Digital Setup” tab of the User Configuration allows the user to control some of the operational parameters that effect the processing and output of data.

Filters

The torque and speed filters provide data smoothing for conditions where there may be erratic torque and speed readings. The filters apply to the base data captured and will affect both the digital and analog outputs.

Enable or disable the filter for torque or speed by clicking on the appropriate “Filter Enabled” checkbox. If enabled, use the appropriate slider bar to select a filter value. Valid values are 2, 4, 8, 16, 32, 64, 128 and 256.

The filtering algorithms can also be enabled, disabled and adjusted on the fly by sending digital commands via the RS232 and USB interfaces.
Limits
The limits feature allows the user to configure the transducer to control external processes based on predefined operational parameters. Control is accomplished via an open collector output on the transducers analog connector. There are numerous ways this feature could be utilised, some examples include, system shutdown on overload or triggering a conveyor belt when a nut/bolt has been tightened to the correct torque.

At present there is a single control line, but the limits feature is very flexible, allowing the user to control the output polarity, high and low limit threshold, samples before trigger, and an auto reset function which resets the limit out if the control value falls back between threshold values.

When Limits is enabled the transducer will monitor the selected control channel, when the value falls below the low limit (if enabled) or exceeds the high limit (if enabled), an internal counter is started and is incremented every time a new value is captured and the condition is met. The counter will be stopped and reset if the control value falls back between the low and high limits. When the counter exceeds the “Samples Required Before Trigger” parameter, the limit output will be set to the active state (level configured using the output polarity). If the auto reset has not been configured the limit output will remain latched irrespective of the control channel value. The limit output can only be reset via a system reset or peak switch input toggle.

If auto reset is enabled the limit function will enter a reset state when the control channel value falls back between the low and high limits. If the reset timeout is enabled the limit output will remain latched until the timeout expires, at which point the fail output will return to the inactive state. The reset stage is cancelled if the control channel value exceeds the high or low limits during the timeout period, if this occurs the timeout is disabled and the limit output will remain in an active state. If the reset timeout is disabled, the limit output will be instantly set to the inactive state when the control channel value falls back between the low and high limits.

On transducers with firmware version 3 or 4 the limit output is shared with the Fail Output pin. When limits are enabled the fail output signal is overridden.

On transducers with firmware version 5 the limit output has been moved to a dedicated I/O pin, allowing access to both limit and fail signals.

Refer to the Transducer User Manual for more details.
To enable Limits click the “Enable Limits” checkbox.

Channel Select
The “Channel Select” option selects the control channel to be used with the limits feature. The user can select between torque and speed.

Output Mode
The “Output Mode” option selects the polarity of the active / triggered state.

Active High
Active / triggered state is high, inactive is low.

Active Low
Active / triggered state is low, inactive is high.

Samples Required Before Trigger
The “Samples Required Before Trigger” parameter sets the number of continuous samples that must exceed the high/low limits, before the limit output is set to the active / triggered state.

Use the “Samples Required Before Trigger” slider bar to select a value, the slider is scaled from 0 to 1000 in increments of 10.

Low / High Limits
The “Low” and “High” limits set the trigger thresholds that control the limit output. Low, High or both limits must be selected to use the Limits feature. The High value must not be lower than the Low value and vice versa.

Enable the High/Low limit by clicking the High/Low checkbox, then use the High/Low slider bar to select the trigger level.
If torque is selected as a control channel then the slider will be scaled from –FSD (counter clockwise full-scale) to +FSD (clockwise full-scale) in increments of 1% of FSD.

If speed is selected as a control channel then the slider bar will be scaled from 0 to FSD in increments of 1% of FSD.

Auto-Reset Limit
The “Auto-Reset Limit” option when enabled will automatically reset a triggered limit output to an inactive state when the control channel value no longer exceeds the low or high limit threshold.

Timeout
The “Timeout” option is an extension of the “Auto-Reset Limit” option and can only be enabled when “Auto-Reset Limit” is enabled. When Timeout is enabled a reset limit event is delayed by the time specified by the Timeout parameter. During the timeout period the limit output will remain latched. The reset limit event is cancelled if the control channel value drops between the low or high limit thresholds during the timeout.

To enable the Timeout option, click on the “Timeout” checkbox (Auto-Reset Limit must be enabled), then use the slider bar to select a timeout duration. The slider bar is scaled from 100ms to 1000ms in 100ms increments.
RS232
The RS232 settings control the RS232 functionality of the connected transducer.

Baud Rate
The baud rate option selects the RS232 transmit and receive rate for the connected transducer. It is recommended that the user select the fastest mode possible (115200bps), as lowering the speed will reduce the throughput and add latency to programs interrogating the transducer.

In some circumstances it may not be possible to run at very high baud rates as some systems, especially embedded devices, may not be able to generate such high baud rates. Long cable lengths may also hinder the use of higher baud rates. To accommodate all users we have provided a selection of three baud rates:

- 9600bps
- 38400bps
- 115200bps

To change the baud rate, select the desired option from the “Baud Rate” combo box. Please note that a baud rate change will only take effect after a transducer reset.

Auto Reset
The “Reset Percentage” controls the reset point of the Peak Torque Auto Reset feature. The Peak Torque Auto Reset feature monitors the captured torque readings and stores the peak torque value. The peak torque value is automatically zeroed...
Transducer Control 5 User Manual (RWT3746IM)

when the current torque value drops below the “Reset Percentage” of the stored peak value.

To configure the percentage, use the slider bar to select a value between 5% and 95%.

Update Transducer

The “Update Transducer” button will upload the settings to the Transducer. Transducer Control will validate the settings before transmission to ensure that there are no errors. If an error is detected an onscreen prompt will notify the user and direct them to a resolution.

If all tests pass the validation check, a progress bar will be displayed to indicate the progress of the settings upload, a message will be shown to indicate success or failure.
Zero Offset

The Zero Offset feature sets a fixed torque offset value. The zero offset can be used to remove any offset that may have been introduced from its mechanical installation or from idle torque present. It must be stressed that the zero offset is no substitute for correct installation.

Any torque value up to FSD is permitted; values over 25% of FSD are allowed but are not advisable. Using an offset of over 25% will flag the High Zero Offset warning. When using high zero offsets, care must be taken not to overstrain the transducer. A zero offset will not extend the full scale rating of the transducer, e.g. if a transducer was zeroed at 50% then a further 50% was applied, the transducer will have reached full scale, even though the transducer would be reading 50%.

The zero offset can be temporary overridden by the digital zero commands or the Normal/Average Zero Input. When the transducer is power cycled the saved zero offset will be restored.

The offset can be entered manually or set from one of 3 options.

Offset Torque Value
The “Offset Torque Value” text box is the torque offset value. The offset is subtracted from the captured torque readings. Manually type in the required offset, or select from the 3 options.

Current Zero
The “Current Zero” button sets the “Offset Torque Value” to the current zero offset value of the transducer.

Clear Offset
The “Clear Offset” button sets the “Offset Torque Value” to zero.

Load Applied
The “Load Applied” button sets the “Offset Torque Value” to the current un-zeroed torque value.

Save Zero Offset
The “Save Zero Offset” button saves the “Offset Torque Value” into the transducers memory. The offset will be retained across power cycles until it is cleared by this window or by the zero input on the transducer.
Transducer Test

Output Monitor

The Output Monitor displays the capture data generated by the transducer.

The peak, min and max values are generated by the transducer based on the torque, speed and power readings captured.

Zero
The “Zero” button instructs the transducer to zero the torque readings. The transducer zeros the torque readings by recording the current torque as an offset, the offset is then subtracted from all future torque readings.

AV Zero
The “AV Zero” button works in the same way as the “Zero” button, but will base the offset value on an average of eight torque readings rather than one.

Reset Peaks (Torque)
The “Reset Peaks” button instructs the transducer to reset all peak torque values.

Reset Peaks (Power)
The “Reset Peaks” button instructs the transducer to reset all peak power values.

R
The “R” buttons instruct the transducer to reset the appropriate peak values.
Transducer Status
The Transducer Status segment displays the current transducer status. The status code is extracted from the transducer and displayed on screen. The transducer LED status sequence is derived from this status code.

System Status
The System Status represents the overall status of the transducer. There are three possible system states:

- **System OK**
 Transducer is operating normally.

- **System Warning**
 Transducer has detected an error which requires user intervention.

- **System Error**
 Transducer has detected a system fault.

Status Code
The Status Code is the value that has been extracted from the Transducer and represents the current status. The Status Code is a collection of binary flags that are combined together and shown in numeric form.

The status code is split into 3 categories, Information, Warning and Error. Each category is composed of a number of flags which identify the status of each test item. When the status code is retrieved from the transducer it is decoded and the status of each item is displayed onscreen.
The meaning of each category and flag is described in the following sections.

Information
Information flags inform the user of operational conditions.

- **Peak ON**
 Peak switch is ON.

- **Custom Analog Scaling**
 A non-standard analog output setup is being used.

- **Limits Triggered**
 The limits feature is in an active/triggered state.

Warning
Warning flags inform the user of conditions that need user intervention or conditions that user should aware of.

- **Analog Channel 0 / Analog Channel 1**
 Analog output load fault detected. The actual problem depends on whether the output is voltage or current, in either case there is a wiring fault.
 - **Voltage** - Fault caused by a short or low load resistance.
 - **Current** - Fault caused by a high load resistance or open load.

- **High Zero Offset**
 A torque zero offset greater than 25% of FSD is in use. Any offset value is allowed, but the warning is asserted because it is potentially a very dangerous circumstance, a user may not realise that an offset is present, then overscale the transducer and damage connected equipment.

- **Exceeded Temperature**
 The transducer is operating outside of the -10°C to +50°C temperature range. The transducer may not operate correctly.

- **Overscale**
 A torque of over 101% of FSD has been applied to the transducer, measurement accuracy cannot be trusted.

- **Critical Overscale**
 A torque of over 120% of FSD has been applied the transducer, at this level measurements will have a low accuracy and there is a danger of permanent damage to the transducer. Reduce the torque level.

- **Head Disconnect**
 The torque measurement head for transducers with external electronics has been disconnected. Power off the electronics, reconnect the torque head and power on.
Error
Error flags indicate that a system fault has been detected. System faults cannot be corrected by the user. If a fault condition does occur, try power cycling the transducer. If the fault does not clear the transducer will have to be returned for service.

Electronics Fault (Firmware Version 5)
An electronics fault has been detected.

Head Disconnect (Firmware Version 3/4)
Please refer to the previous section for a description of this error. In firmware version 5 this error was reclassified as a warning as it is a condition that is correctable by the user.

SAW Error
A SAW error indicates that the shaft attached SAW devices are not operating within normal parameters.

Failed Temperature Sensor
A failed temperature sensor error indicates that the transducers internal shaft temperature sensor has malfunctioned. When the temperature sensor fails the transducer will no longer compensate the torque readings for changes in temperature, which will cause a loss in accuracy.

Irregular Internal Voltage
An irregular internal voltage error indicates that main processor has detected that one of the internal voltage rails is operating outside of normal parameters.

Data Configuration Invalid
A data configuration invalid error indicates that main build configuration has been corrupted.

Calibration Invalid
A calibration invalid error indicates that the calibration data has become corrupted.

SAW Parameters Invalid (RWT Transducers)
A SAW parameters invalid error indicates that an internal configuration structure has become corrupted.

ORT Parameters Invalid (ORT Transducers)
An ORT parameters invalid error indicates that an internal configuration structure has become corrupted.
Maximum Operating Conditions Exceeded
The maximum operating conditions exceeded section reports on conditions that the transducer has been subjected to which are beyond normal operating parameters.

Torque
 Exceeded Count
 Count of the number of times the torque level has gone over FSD.

Maximum Recorded
 Maximum recorded torque value over FSD.

Temperature
 Exceeded Count
 Count of the number of times the temperature has exceeded the operational parameters of the transducer. The normal operating range is -10°C to +50°C

Maximum Recorded
 Maximum recorded temperature. If a negative and a positive temperature value have been recorded, the maximum is value shown as the biggest change from 25°C.
USER MANUAL
TorqView Software

TorqView, version 5, can be installed as a Demo (if a full program has not yet been purchased) and as a Full purchased program. The demo program allows for 10 hours use and all functions are available except the save to file function.

If TorqView was purchased with the transducer, the transducer will be enabled to run TorqView. If TorqView was purchased at a later date then an activation key is required to convert the program from Demo to Full. The factory will send the activation key and details of how to convert are on the About Screen towards the end of this manual.

Recommended minimum system requirements
Sensor Technology recommends a PC running Windows 10/8/7 with a minimum of 1GB of RAM; a minimum screen resolution of 1024 x 768 pixels; a Pentium 4 or equivalent processor; and a minimum of 650 MB free disk space.

CAUTION
If planning to use a USB connection please either install Transducer Control 5 or run the driver installer program before running TorqView 5.

Installing TorqView
Step 1: Insert the TorqView USB flash drive into an available USB port.
Step 2: Navigate to Computer and select the TORQVIEW USB device:

Step 3: Double click on AutoRun.exe
Step 4: Click on the 'Install' button opposite TorqView.

Step 5: Follow the guidance.
Step 6: On completion TorqView is ready to run.

The default install directory is: C:\Program Files(x86)\Sensor Technology\Torqvie5\Torqvie5.exe

Running TorqView
To avoid any communication errors it is advised that all torque transducer cables and leads are correctly plugged in and the instrument is turned on before running TorqView.

TorqView can be run from:- “Start”/”Windows” button, then “Programs”/”All apps” > “Sensor Technology” > “TorqView 5”.
When TorqView starts a screen will be displayed to enable users to select which port the transducer is connected to.

![Transducer Selector](image)

Click on the left hand side drop down menu to show all available ports found on the computer.

AUTO will search for transducers connected on all ports. Use AUTO if more than one transducer is connected.

AUTO RS232 will search for transducers connected only on RS232 ports.

AUTO USB will search for transducers connected only on USB ports.

COM1 etc. will search for transducers connected only on COM1 etc ports.

If it is known which port the transducer is connected, then select it from the list and click it.

![Transducer Selector](image)

Next, click on the ‘Search’ button. TorqView will now search for transducers connected on the selected port.

![Transducer Selector](image)

A ‘Searching’ text will flash blue and an indicator will show the progress. This may take a few minutes depending on the number of ports. When the transducer connected to its port has been found, it will be displayed in a drop down menu. If more than one transducer has been found it will display all of them in a drop down menu. Select which transducer to use.

![Transducer Selector](image)
The selected transducer will now be connected and the ‘Search For Transducers’ screen will disappear and be replaced by the Dials Screen.

See the Setup Screen for more information on how to change between transducers when using TorqView. For ease of use, the next time TorqView is run it will default to the previously selected port a transducer was connected to.

TorqView Function Bar

The TorqView Function Bar, located at the bottom of all the screens, shows all the relevant TorqView buttons. The LED, illuminates green when connected to show that the transducer is working correctly. If any warnings or errors occur with the transducer while running TorqView, the LED will change its colour from Green to Yellow (Warning) or to Red (Error). To diagnose the warning or error see the About Screen to diagnose.

The Function Bar also shows the serial number of the currently active transducer. If two transducers are connected they can be changed using the Setup Screen.

Click “EXIT TORQVIEW” to exit the program. Choose, “Shuttdown” to close the program or “Standby” to disconnect the transducer and leave the screen showing so the program can be run again.

To run the program from “Standby”, click on the white arrow button at the top left hand corner of the screen.

Click “ZERO TORQUE” to zero the torque value. Care should be taken when using the “ZERO TORQUE” function because an offset could be created if there is any torque already applied.

Click “ZERO PEAKS” to zero the peaks of the Torque, Speed and Power values.

Click “POWER GAUGE” and “TEMP GAUGE” to select power and shaft temperature dials.

Click “RECORD” to start recording data. (See Setup Screen for details on how to set parameters and record/save a file). Record button will be disabled until a file has been configured.

Function buttons will change to a darker grey when switched on.
The Dials Screen is the main TorqView screen and displays torque, speed, power and temperature.

The torque dial is automatically scaled to the FSD of the connected transducer. Units and full scale are displayed on the dial and can be user configured via the Setup Screen.

The torque dial can be set to display Center Zero (zero at the top centre) or Normal (zero at bottom). The blue needle displays the torque applied value.

Peak Torque is displayed in two ways. If the dial is in Center Zero mode, orange needles will display the peak value for both the CC and CCW directions. If the dial is in Normal mode one orange needle will display the highest peak from either the CC or CCW direction.

The Speed dial scale is automatically adjusted depending on the value, e.g. if the speed rises above 1000 rpm, the scale will auto adjust to 5000 rpm. The blue needle displays actual speed values whereas the orange needle displays the peak speed value.

The Temp dial displays the temperature inside the transducer. See the Data sheet for limitations.

The Power dial displays the power as a function of the torque and speed applied.
The Digital Screen displays the same data, less temperature, as the Dials Screen but as digital bars. The blue coloured bar displays the actual data, whereas the orange coloured bar, as an underlay of the blue coloured bar, displays peak value. Actual and Peak values are also displayed as numeric values under the coloured display bars.
The Chart Screen displays the data onto a chart. Scales are automatically set at initialisation or user set via the Setup Screen.

Check the Torque, Speed, Power boxes to select which channels to display. Any combination is possible. Only the selected channel scales will be visible.

The “Start Chart” button starts and stops the chart with the green light illuminated to indicate that the chart has started and no light illuminated to indicate that the chart has stopped. With the chart is stopped, the horizontal slider can be used to analyse the data.

The “Clear Chart” button deletes data from the chart.

The “Center Zero” button allows the torque chart go through zero to show bi-polar torque.

Zoom tools are available at the bottom left of the chart.

The “Export Chart” button allows the chart's current data to be exported as several picture formats or to the clipboard. These settings are adjustable on the Setup Screen. Use the Zoom tools to export a specific section of the chart.
The Setup Screen is used to select the scales and units displayed on other screens as well as to select other options.

Scale: The Scale section has functions to override the default Torque, Speed and Power scales. To change the scale, toggle the Auto/User button to User and enter the scale by typing or toggling the “Torque”, “Speed” and Power.

Units: The Units section has functions to select the units displayed on other screens by clicking the drop downs. Changes between different units of Torque, Power and Temperature Eg: Nm to lbf.in are possible.

Save to file: (not available on the Demo program) Record the selected data into a text file. The channels to be recorded are selected by using the check boxes. Name, notes or comments can be added. These details will form the header of the text file containing the date, serial number of the active transducer and any comments. Once these details are entered, click ‘Select file’. Chose the destination of the file. Click “RECORD” on the TorqView Function Bar to start recording. To view saved files, double click file at saved destination. The file will open in ‘Notepad’ or a related text viewer. Data will be displayed in columns in the order of the boxes checked. E.g. if Torque and Power are checked then Torque will be column 1.

Fast data record
This is used to record data at up to 50000 samples per second with start and stop criteria. Please see below for more details

Export Chart: The Export Chart section has functions to setup which file type to export the picture of the chart, whether to save it as a file or copy it to the clipboard. It also enables grid lines to be selected.

Filters: The Filters section has functions to smooth any erratic data. The frequency response will reduce depending on the filter factor. Check ‘Save Filters’ to store the filter value in the transducer so that it can be remembered after a power cycle. If ‘Save Filters’ is unchecked when ‘SET” button is pressed then the value will return to the last saved value after a power cycle.

Select Transducer: If more than one transducer is connected, select one from the drop down menu and click on ‘Select’ for it to be active and connected.
Fast data record

When you click on 'Fast Data Record, it will warn you that it will close TorqView and run the Fast Data Record Program.

You will now be presented with the Setup Wizard. This will take you through the steps of setting up how you wish the record to be setup. Simply select your options and click next to continue.

The first screen is where you select what data you would like to record, and any comments you would like to add. Once you have finished, click Next. You will then be asked where you want to save the file and the file name. Click Save when done.

You can now set the sample rate at which you want to record. TorqView will tell you the maximum rate your transducer is capable of. Type in the box the samples you require and it will give you an approximate file size that will be created. Once done click Next.
The start condition can now be set. Select your option from the drop down, fill in any additional information and click Next.

Set the stop condition. Choose your option from the drop down fill in any additional information and click next.

The next screen will show you a summary of how the record has been set up. If you are happy with details, click the ARM button. The program will now wait until the start trigger has been met and will then start to record.

The software will keep recording until the stop condition is met. If this was stop with button, click the button to stop the record.
When it has stopped recording, the data will save to file, and you will be asked if you would like to repeat the test.

![SAVING FILE](image)

If you select yes, the record wizard will start again, if you select no you will be given the option of running TorqView or exiting the program.

![Which program would you like?](image)

If you select TorqView, the program will close and TorqView will start.
About Screen

The About Screen displays the TorqView version and whether it is a Demo or Full program. The Demo program will display how many minutes remain. Both programs will also display the Serial No. of the active transducer, the date of its last calibration, its manufactured date the firmware version and the Transducer Status Lights diagnostic box.

Convert to Full program: To convert the program from Demo to Full, enter an Activation key (supplied at a later date only on purchase of a full program) in the box and press the ‘Activate’ button. Next exit TorqView and restart the program.

Factory default reset: If a factory default reset (details in User Manual) has been carried out and TorqView was purchased with the transducer then TorqView reactivation is not required. However, if a factory default reset has been carried out and TorqView was purchased at a later date then reactivation is required.

Transducer Status Lights: The rectangular transducer status lights box illuminates appropriate lights to enable diagnostics. An appropriate ‘Warnings’ light will illuminate if the TorqView Function Bar LED changes colour from Green to Yellow. Likewise, an appropriate ‘Errors’ light will illuminate if the TorqView Function Bar LED changes colour from Green to Red.

If, while using TorqView on the other screens, the TorqView Function Bar LED changes colour from Green to Yellow or from Green to Red, then always refer to the About Screen and, in particular, the Transducer Status Lights for more information. See the table below for an interpretation and possible actions.
Transducer Status Lights - Interpretation and actions:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Warnings</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak mode</td>
<td>One of the peak options has been selected in either the transducer control software or by using the analog lead contact closure on pin 8.</td>
<td>Capture Board
The DSP has failed to initialise. Power cycle the transducer. Contact factory if error continues.</td>
</tr>
<tr>
<td>Analog Scaling</td>
<td>The full scale of the analog output has been changed to a user-selected scale in the transducer control program.</td>
<td>SAWS
A SAW device has failed. Contact factory if error continues.</td>
</tr>
<tr>
<td>Limits</td>
<td>Limits output has been triggered</td>
<td>Failed Temp sensor
The infrared temperature sensor has failed. Temperature compensation is ineffective. Contact factory if error continues.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irregular Voltage
One or more of the internal voltages is not within specification. Check the input power supply is within specification of the data sheet. Contact factory if error continues.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overscale
Torque has been applied greater than the specified FSD.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical overscale
Torque has been applied greater than 120% of the FSD. Contact factory if warning continues.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Head Disconnect
Lead has been disconnected from the transducer.</td>
</tr>
</tbody>
</table>

Additional Information

There is no requirement to install LabVIEW because TorqView is a self-running executable file.

However, if LabVIEW is installed and there is a requirement to make unique programs or allow TorqView to communicate with other LabVIEW programmes, VI’s are available from Sensor Technology on the website www.sensors.co.uk at:
http://sensors.co.uk/products/pages/labvi.html