Signale drahtlos austauschen

Messverfahren auf Basis akustischer Oberflächenwellen - Prinzip, Vorteile und Einsatzgebiete

Thomas Richter
Immer wieder kämpfen Anwender mit den Nachteilen herkömmlicher Drehmoment-Messmethoden. Um eine allumfassende Lösung zu bieten, ist das britische Unternehmen Sensor Technology von den üblichen Wegen abgewichen. Welchen Ansatz sie gewählt haben und was für Vorteile sich daraus ergeben, das erfahren Sie im folgenden Beitrag.

Thomas Richter ist Verkaufsgebiessleiter Bayern/Österreich/Thüringen/Sachsen bei der Althen GmbH Meß- und Sensortechmik in Kelkheim bei Frankfurt am Main

Die genaue Erfassung des Drehmoments, das auf rotierende Teile wirkt, spielt bei der Entwicklung und dem Betrieb unterschiedlichster Geräte eine zentrale Rolle von Unterwasserturbinen für Gezeitenkraftwerke bis zu elektrischen Kleinstmotoren für Rasierapparate oder automatische Heizungsventile. Unabhängig von der Größe ist das Messprinzip meist dasselbe: Man misst die Verformung, die eine Kraft beim Einwirken auf ein mechanisches Element wie etwa eine Getriebewelle verursacht, und errechnet daraus das Drehmoment.

Zur Erfassung der Verformung sind im Lauf der Zeit viele verschiedene Methoden entwickelt worden. Neben optischen Methoden wie der sogenannten Schatten-Moiré-Technik oder laserbasierten Ansätzen gibt es cine ganze Reihe von elektrischen Verfahren, darunter kapazitive, induktive, piezoelektrische und resistive Methoden. Viele dieser häufig sehr kostspieligen Methoden sind im industriellen Umfeld nicht immer praktikabel.

Unter dem Aspekt der Wirtschaftlichkeit bietet die Krafterfassung mittels Dehnungsmessstreifen (DMS) eine Alternative. Aber auch diese Methode hat praktische Nach-
teile: Die Messgenauigkeit ist sehr begrenzt und die Verbindung mit einer Stromquelle kann schwierig sein. Eine vollständig zufriedenstellende lösung fur die Erfassung des Drehmoments war also lange Zeit nicht verfügbar. Um diese Lücke zu schließen, hat das britische Unternehmen Sensor Technology einen völlig neuen Ansatz gewählt.

Drehmoment wirkt auf Resonanzfrequenz

Das Messelement ist ein Wandler zur Erfassung von akustischen Oberflächenwellen (AOW), die auch unter der englischen Abkurzung SAW (surface acoustic wave) Erwähnung finden. Das Kernstück des Wandlers sind zwei Elektroden, die in der Art von verschränkten Fingern ineinandergreifen. Die Elektroden aus cinem dünnen Metallfilm sind auf einem piezoelektrischen Substrat angebracht, beispielsweise Quarz. Der Wandler wird auf dem mechanischen Element angebracht, das untersucht werden soll, beispielsweise einer Getriebewelle. Legt man an einen solchen Wandler ein elektrisches Signal einer bestimmten Frequenz im Radiobereich an,

löst dies akustische Schwingungen aus, die sich auf der Oberfläche des Substrats fortpflanzen: die akustischen Oberflächenwellen. Der Wandler bildet also einen Schwingkreis aus Elektrode und Substrat.
Durch das Drehmoment, das auf die Getriebewelle wirkt, wird diese mechanisch verformt. Diese Verformung überträgt sich auf das piezoelektrische Substrat des Wandlers, wodurch sich die Resonanzfrequenz des Schwingkreises ändert. Die Änderung der Resonanzfrequenz hängt also vom Drehmoment ab, das auf die Welle wirkt. Aufgrund dieses Zusammenhangs kann man einen solchen Wandler als frequenzabhängigen Kraftsensor nutzen.

Messdaten in Echtzeit

Weil AOW-Wandler im Radiofrequenzbereich arbeiten, sind sie für den drahtlosen Austausch von Signalen prädestiniert. Der Wandler kann auf Wellen und anderen rotierenden Teilen platziert werden, ohne dass diese durch Kabel oder ähnliches beeinträchtigt würden. Damit sind auch die Voraussetzungen für genauere Messungen und eine unterbrechungsfreie Datenübertragung gegeben, weil das Signal bei der Funkübertràgung weniger beeinträchtigt wird als bei Schleifringen und anderen (elektro-) mechanischen Übertragungsverfahren. Das wirkt sich auch auf die Verarbeitungsgeschwindigkeit der Signale aus. Mit der Drehmomentmessung mittels AOW-Wandler werden die Messdaten in Echtzeit verfügbar.

Die AOW-Wandler-Technologie ermöglicht auch eine kompaktere und robuste Bauform für Drehmoment-Messgeräte. Die von Sensor Technology angebotenen

02 Aufbau der Drehmomentaufnehmer: links mit Elektrode auf der Messachse, darunter der Pickup für die Drehwinkelbestimmung

Geräte der Familie Torq-Sense, die Althen im deutschsprachigen Raum vertreibt, können Drehmomente von einem bis 13000 Nm exakt messen. Auch Sonderanfertigungen für noch höhere Messbereiche sind möglich.

Flexible Einsatzmöglichkeiten

Die Torq-Sense-Geräte sind in ihrem Anwendungsbereich flexibel. Dazu zählen das Testen von elektrischen Pumpen - von Kleingeräten bis zu Anlagen, die in Stahlwerken und anderen Industriebetrieben eingesetzt werden, über die Ermittlung der Standfestigkeit von Stehbolzen oder anderen mechanischen Komponenten bis hin zu Anwendungen in universitären Forschungslabors, z.B. wird die Viskosität bestimmter Substanzen mithilfe von Rührwerken ermittelt, an deren Schaft ein Drehmomentsensor angebracht ist.
www.althen.de

03 Die Drehmomentaufnehmer werden für Entwicklung und Untersuchungen an Turbinen von Gezeitenkraftwerken eingesetzt

SENSOR+TEST 2014, Nürnberg, 3.-5. Juni, Halle 12, Stand 410 electronica 2014, München - SPS/IPC / Drives 2014, Nürnberg

Sin/Cos Überwachung für Safety

iC-RC1000
Sin/Cos-Signalsicherheits-Überwachung

- Prüfung von 1 Vpp - Zwei unabhängige

Encoder-Signalen für SIL

- Erkennt Kabelbruch
- Prüfung des

DC-Gleichtaktbereichs

- Überwachung der

Lissajous-Figur

- Echtzeit: DC bis 500 kHz

Diagnoseausgänge

- 5 V , kleiner 2 mA
- $-40^{\circ} \mathrm{C}$ bis $+110^{\circ} \mathrm{C}$
- Platzbedarf im

10-Pin MSOP nur
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$

Tel. 06135/92 92-300 www.ichaus.de/rc

